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Polymer  semiconductors  have  aroused  interests  from
both academic and industry due to their wide applications in
electronic  devices,  such  as  organic  thin-film  transistors  (OT-
FTs)[1],  polymer  solar  cells  (PSCs)[2−6],  organic  thermoelectrics
(OTEs)[7−11],  and  perovskite  solar  cells  (PVSCs)[12−14].  To  date,
great  efforts  have  been  devoted  to  developing  p-type  poly-
mer  semiconductors,  while  the  development  of  n-type  poly-
mers lags far behind. In fact, n-type polymers are essential for
organic electronic devices.

Currently,  lots  of  n-type  polymers  are  donor–acceptor
(D–A)  copolymers[15],  however,  the  electron-rich  donor  units
can lift both the lowest unoccupied molecular orbital (LUMO)
and  highest  occupied  molecular  orbital  (HOMO),  yielding  p-
type  or  ambipolar  charge-transport  characteristics.  To  inhibit
hole injection and achieve unipolar electron-transport, accept-
or–acceptor (A–A) combination could be a good strategy. For
instance, Luscombe et al.[16] reported a NDI-based A–A homo-
polymer via Yamamoto  coupling,  however  the  polymer
showed  a  low μe of  6  ×  10–4 cm2/(V·s)  due  to  high  steric
hindrance  of  NDI  unit.  To  reduce  steric  hindrance  of  NDI,
thiophene-fused  NDI  derivative,  naphtho[2,3-b:6,7-bʹ]-dith-
iophenediimide  (NDTI),  was  designed  by  Takimiya et  al.  Sub-
sequently,  various  n-type  A–A  polymer  semiconductors
(PNDTI-BBT-DP  and  PNB-TzDP)  from  NDTI  were  developed
with  high  electron  mobility  and  electrical  conductivity,  and
were  applied  in  OTFTs  and  OTEs  (Fig.  1)[17−19].  Reichmanis
et  al.  developed  a  thiazole-based  A–A  type  polymer
PDPP5DH-4Tz[20] by  replacing  the  flanked  thiophene  units  of
DPP  with  thiazoles,  and  it  presented  unipolar  charge-trans-
port properties with μe of 0.067 cm2/(V·s).

Among  various  electron-deficient  units,  bithiophene  im-
ide  (BTI)  has  been proved to  be  an  eminent  unit  for  building
n-type  polymer  semiconductors.  Guo et  al. developed  a  seri-
ous  of  highly  electron-deficient  semi-ladder  BTI  derivatives
(BTIn) with up to 5 imide groups and 15 rings in a row, offer-
ing a  remarkable  platform for  developing n-type polymer  se-
miconductors[21].  Subsequently,  they  also  synthesized  bith-
iazole  imide  (BTzI)[22] and  thiazolothienyl  imide  dimer
(DTzTI)[23] electron-deficient  units  by  replacing  thiophene
with thiazole to further  push down the frontier  molecular  or-
bitals  (FMOs)  energy  levels,  as  a  result,  both  A–A  type  poly-
mers PBTzI and PDTzTI (Fig. 1) showed unipolar n-type charac-
ter  in  OTFTs.  PDTzTI  exhibited  a  remarkably  high μe of  1.61

cm2/(V·s). This polymer structure also favors to overcome Cou-
lomb  interaction  in  the  doped  state  for  OTEs.  The  doped
PDTzTI  presented  good  charge-generation,  giving  a  remark-
able electrical conductivity (σ) of 4.6 S/cm and a power factor
(PF)  of 7.6 μW/(m·K2),  much  higher  than  those  of  NDI  poly-
mers[24].  Owing  to  its  high  electron  mobility  and  well-
matched  energy  levels,  PDTzTI  as  electron-transport  layer
(ETL)  in  inverted PVSCs  yielded a  PCE of  20.8% [25].  Driven by
the success of A–A type homopolymer PDTzTI, Guo et al. also
developed  a  serious  of  A–A  type  homopolymers  PBTIn  (n =
1–5)  (Fig.  1)[26].  Homopolymer  PBTI  (Mn 12.7  kDa)  had μe of
1.53  cm2/(V·s).  By  using  off-center  spin-coating,  the μe fur-
ther increased to 3.71 cm2/(V·s).

Shi et  al.[27] prepared  distannylated  bithiophene  imide
(BTI-Tin),  and  polymerized  it  with  other  electron-deficient
units  to  give  various  A–A  type  polymers  with  high  molecular
weights.  They  optimized  the  synthetic  routes  to  give  PBTI
with high Mn of  35.5 kDa,  which showed a μe of  2.6  cm2/(V·s)
in  OTFTs.  They  also  studied  the  PBTI  with  different Mn as  ac-
ceptor  in  PSCs.  The  device  with  PBTI  (Mn 12.7  kDa)  and  PBTI
(Mn 35.5  kDa)  as  acceptors  and  PTB7-Th  as  the  donor  gave
PCEs  of  0.14%  and  6.67%,  respectively.  BTI-based  A–A  type
polymer  L14[28] presented  good  device  performance  with  a
PCE  of  14.3%.  Polymerizing  BTI-Tin  with  dibrominated  naph-
thalene  diimide  (NDI-Br)  and  perylene  diimide  (PDI-Br)  pro-
duced  two  A–A  copolymers  P(BTI-NDI)  and  P(BTI-PDI)[29].
When  applying  them  as  ETLs  in  planar  p–i–n  PVSCs,  the
devices gave PCEs of 19.5% and 20.8%, respectively, with neg-
ligible  hysteresis.  To  solve  the  high  LUMO  issue  caused  by
electron-rich  thiophene  moiety  in  BTI,  Guo et  al. synthesized
a  novel  acceptor  building  block  CNI[30] by  incorporating
strong  electron-withdrawing  cyano  onto  BTI.  A–A  type  co-
polymer  PCNI-BTI  with  low  LUMO  level  was  obtained,  offer-
ing a σ of 23.3 S/cm and a PF of 10 mW/(m·K2) in OTE. Huang
et  al. prepared A–A type copolymers  based on isoindigo (IIG)
and  PDI,  and  used  them  as  acceptors,  yielding  a  PCE  of
2.68%[31].  Liu et  al. designed  a  series  of  A–A  copolymers
based  on  B←N  embedded  building  blocks,  and  the  all-PSCs
with P-BN-IID as the acceptor achieved a PCE of 5.04%[32].  Re-
cently,  they  also  synthesized  A–A  type  copolymers  PBN-18
and  PBN-19[33] with  a  strong  electron-deficient  BNBP  unit.
After  n-doping,  PBN-19  exhibited  σ  of  7.8  S/cm  and  PF  of
24.8 μW/(m·K2).

The  A–A  type  polymers  show  great  potential  in  OTFTs,
PSCs,  PVSCs  and  OTEs.  The  acceptor  units  are  fewer  than
donor  units,  so  more  efforts  should  be  devoted  to  develop-
ing novel electron-deficient building blocks.
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